题目内容

如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB1上一点,且面DA1 C⊥面AA1C1C.
(1)求证:D为棱BB1中点;
(2)
AA1AB
为何值时,二面角A-A1D-C的平面角为60°.
分析:(1)过点D作DE⊥A1C于E点,取AC的中点F,连BF,EF.先证明DE⊥面AA1C1C,再证明D,E,F,B共面,进而有EF∥AA1,又点F是AC的中点,即可得到结论;
(2)过B作BH⊥A1G于点H,由三垂线定理知,A1G⊥CH,则可得∠CHB为二面角A-A1D-C的平面角,利用二面角A-A1D-C的平面角为60°,即可得到结论.
解答:(1)证明:过点D作DE⊥A1C于E点,取AC的中点F,连BF,EF.

∵面DA1C⊥面AA1C1C且相交于A1C,面DA1C内的直线DE⊥A1C,
∴DE⊥面AA1C1C.
又∵面BAC⊥面AA1C1C且相交于AC,且△ABC为等腰三角形,∴BF⊥AC,
∴BF⊥面AA1C1C.由此知:DE∥BF,从而有D,E,F,B共面,
又BB1∥面AA1C1C,故有DB∥EF,从而有EF∥AA1,又点F是AC的中点,
所以DB=EF=
1
2
AA1=
1
2
BB1

所以D为棱BB1中点;
(2)解:延长A1D与直线AB相交于G,则CB⊥面AA1B1B
过B作BH⊥A1G于点H,由三垂线定理知,A1G⊥CH
由此可知∠CHB为二面角A-A1D-C的平面角
设AA1=2b,AB=BC=a,则在直角△A1AG中,AB=BG;
在直角△DBG中,BH=
BD•BG
DG
=
b•a
a2+b2

在直角△CHB中,tan∠CHB=
BC
BH
=
a2+b2
b

∵二面角A-A1D-C的平面角为60°,
a2+b2
b
=tan60°=
3

2b
a
=
2

AA1
AB
=
2
点评:本题考查平面与平面垂直的性质,考查面面角,考查分析问题解决问题的能力,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网