题目内容

定义符号函数sgnx=
1(x>0)
0(x=0)
-1(x<0)
则不等式:x+2>(2x-1)sgnr的解集是 ______
当x>0时,sgnx=1,原不等式化为x+2>2x-1,解得x<3,所以原不等式的解集为0<x<3;
当x=0时,sgnx=0,原不等式化为x+2>1,解得x>-1,所以原不等式的解集为x=0;
当x<0时,sgnx=-1,原不等式化为x+2>(2x-1)-1即(x+2)(2x-1)<1,(x-
-3-
33
4
)(x-
-3+
33
4
)<0,
解得
-3-
33
4
<x<
-3+
33
4

综上,原不等式的解集是{x|-
3+
33
4
<x<3}
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网