题目内容
(14分)等差数列中,前三项分别为,前项和为, (1)、求和; (2)、设T=,证明T<1
(1) (2)略
解析
(本小题12分)在二项式的展开式中,前三项系数的绝对值成等差数列,求展开式中的常数项。
(12分)已知等差数列中,前n项和满足:,。
(Ⅰ) 求数列的通项公式以及前n项和公式。
(Ⅱ)是否存在三角形同时具有以下两个性质,如果存在请求出相应的三角形三边
以及和值:
(1)三边是数列中的连续三项,其中;
(2)最小角是最大角的一半。
(本小题满分12分)
在二项式(+)n的展开式中,前三项的系数成等差数列,求展开式中的有理项.
(14分)等差数列中,前三项分别为,前项和为(1)、求和; (2)、求T=。