题目内容
(2007•广州模拟)已知平面向量
=(
sinx,cosx),
=(cosx,cosx),x∈(0,π〕,若f(x)=
•
(1)求f(
)的值;
(2)求f(x)的最大值及相应的x的值.
| a |
| 3 |
| b |
| a |
| b |
(1)求f(
| π |
| 2 |
(2)求f(x)的最大值及相应的x的值.
分析:(1)由题意可求得f(x)=
•
=sin(2x+
)+
,从而可求得求f(
)的值;
(2)由f(x)=sin(2x+
)+
,可求得f(x)的最大值及相应的x的值.
| a |
| b |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 2 |
(2)由f(x)=sin(2x+
| π |
| 3 |
| 1 |
| 2 |
解答:解:(1)∵f(x)=
•
=
sinxcosx+cos2x
=
sin2x+
=sin(2x+
)+
,
∴f(
)=sin(2×
+
)+
=-sin
+
=-
+
.
(2)∵f(x)=sin(2x+
)+
∴当2x+
=
+2kπ(k∈Z)
即x=
+kπ(k∈Z)时
有f(x)max=1+
=
.
| a |
| b |
=
| 3 |
=
| ||
| 2 |
| cos2x+1 |
| 2 |
=sin(2x+
| π |
| 3 |
| 1 |
| 2 |
∴f(
| π |
| 2 |
| π |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
=-sin
| π |
| 3 |
| 1 |
| 2 |
=-
| ||
| 2 |
| 1 |
| 2 |
(2)∵f(x)=sin(2x+
| π |
| 3 |
| 1 |
| 2 |
∴当2x+
| π |
| 3 |
| π |
| 2 |
即x=
| π |
| 12 |
有f(x)max=1+
| 1 |
| 2 |
| 3 |
| 2 |
点评:本题考查三角函数的化简求值,着重考查平面向量数量积的运算及正弦函数的性质,属于中档题.
练习册系列答案
相关题目