题目内容
3.己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f($\frac{1}{2}$)的实数x为 ( )| A. | $\frac{17}{2}$ | B. | $\frac{67}{8}$ | C. | $\frac{33}{4}$ | D. | $\frac{65}{8}$ |
分析 由f(x+1)为奇函数,可得f(x)=-f(2-x).由f(x)为偶函数可得f(x)=f(x+4),故 f(x)是以4为周期的函数.当8<x≤9时,求得f(x)=f(x-8)=log2(x-8).由log2(x-8)+2=-1得x的值.
解答 解:∵f(x+1)为奇函数,即f(x+1)=-f(-x+1),即f(x)=-f(2-x).
当x∈(1,2)时,2-x∈(0,1),∴f(x)=-f(2-x)=-log2(2-x).
又f(x)为偶函数,即f(x)=f(-x),于是f(-x)=-f(-x+2),
即f(x)=-f(x+2)=f(x+4),故 f(x)是以4为周期的函数.
∵f(1)=0,∴当8<x≤9时,0<x-8≤1,f(x)=f(x-8)=log2(x-8).
由f($\frac{1}{2}$)=-1,f(x)+2=f($\frac{1}{2}$)可化为log2(x-8)+2=-1,得x=$\frac{65}{8}$.
故选:D.
点评 本题主要考查方程的根的存在性及个数判断,函数的奇偶性与周期性的应用,抽象函数的应用,体现了化归与转化的数学思想,属于中档题.
练习册系列答案
相关题目
18.函数y=($\frac{1}{2}$)${\;}^{\sqrt{1-|x|}}$的单调递增区间是( )
| A. | [-1,0] | B. | (-∞,-1] | C. | [1,+∞) | D. | [0,1] |