题目内容
设向量
=(cos2x,1),
=(1,
sin2x),x∈R,函数f(x)=
•
.
(I )求函数f(x)的最小正周期及对称轴方程;
(II)当x∈[0,
]时,求函数f(x)的值域.
| a |
| b |
| 3 |
| a |
| b |
(I )求函数f(x)的最小正周期及对称轴方程;
(II)当x∈[0,
| π |
| 2 |
(Ⅰ)f (x)=
•
=(cos2x,1)•(1,
sin2x)
=
sin2x+cos2x
=2 sin(2x+
),…(6分)
∴最小正周期T=
=π,
令2x+
=kπ+
,k∈Z,解得x=
+
,k∈Z,
即f (x)的对称轴方程为x=
+
,k∈Z.…(8分)
(Ⅱ)当x∈[0,
]时,即0≤x≤
,可得
≤2x+
≤
,
∴当2x+
=
,即x=
时,f (x)取得最大值f (
)=2;
当2x+
=
,即x=
时,f (x)取得最小值f (
)=-1.
即f (x) 的值域为[-1,2].…(12分)
| a |
| b |
| 3 |
=
| 3 |
=2 sin(2x+
| π |
| 6 |
∴最小正周期T=
| 2π |
| 2 |
令2x+
| π |
| 6 |
| π |
| 2 |
| kπ |
| 2 |
| π |
| 6 |
即f (x)的对称轴方程为x=
| kπ |
| 2 |
| π |
| 6 |
(Ⅱ)当x∈[0,
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
∴当2x+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
当2x+
| π |
| 6 |
| 7π |
| 6 |
| π |
| 2 |
| π |
| 2 |
即f (x) 的值域为[-1,2].…(12分)
练习册系列答案
相关题目
设向量
=(1,sinθ),
=(3sinθ,1),且
∥
,则cos2θ等于( )
| a |
| b |
| a |
| b |
A、-
| ||
B、-
| ||
C、
| ||
D、
|