题目内容

14.(1)若α+β=45°,求证:(tanα+1)(tanβ+1)=2;
(2)若(tanα+1)(tanβ+1)=2,求α+β的值.

分析 (1)由条件利用两角和的正切公式化简等式的左边,即可证得结论.
(2)由所给的等式利用两角和的正切公式求得 tan(α+β)的值,可得α+β的值.

解答 (1)证明:∵α+β=45°,∴tan(α+β)=1,
∴(tanα+1)(tanβ+1)=tanβtanβ+(tanα+tanβ)+1=tanβtanβ+tan(α+β)(1-tanαtanβ)+1
=tan(α+β)+1=2.
(2)解:若(tanα+1)(tanβ+1)=tanβtanβ+(tanα+tanβ)+1=2,
则 tanα+tanβ=1-tanβtanβ,即 tan(α+β)(1-tanβtanβ )=1-tanβtanβ,
∴tan(α+β)=1,∴α+β=kπ+$\frac{π}{4}$,k∈Z.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网