题目内容
对于n∈N*,用数学归纳法证明:1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1=
| 1 | 6 |
分析:根据数学归纳法证明的步骤,首先验证当n=1时成立,进而假设n=k时等式成立,证明n=k+1时,等式也成立;最后作答即可.
解答:证明:设f(n)=1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1.
(1)当n=1时,左边=1,右边=1,等式成立;
(2)设当n=k时等式成立,即1•k+2•(k-1)+3•(k-2)+…+(k-1)•2+k•1=
k(k+1)(k+2),
则当n=k+1时,
f(k+1)=1•(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-2]•3+[(k+1)-1]•2+(k+1)•1
=f(k)+1+2+3+…+k+(k+1)
=
k(k+1)(k+2)+
(k+1)(k+1+1)
=
(k+1)(k+2)(k+3).
∴由(1)(2)可知当n∈N*时等式都成立.
(1)当n=1时,左边=1,右边=1,等式成立;
(2)设当n=k时等式成立,即1•k+2•(k-1)+3•(k-2)+…+(k-1)•2+k•1=
| 1 |
| 6 |
则当n=k+1时,
f(k+1)=1•(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-2]•3+[(k+1)-1]•2+(k+1)•1
=f(k)+1+2+3+…+k+(k+1)
=
| 1 |
| 6 |
| 1 |
| 2 |
=
| 1 |
| 6 |
∴由(1)(2)可知当n∈N*时等式都成立.
点评:本题考查数学归纳法的证明,需要牢记数学归纳法证明的步骤,特别要注意从k到k+1等式的形式的变化、区别.
练习册系列答案
相关题目