题目内容
已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值 (2)求f(2)的取值范围
(1)求b的值 (2)求f(2)的取值范围
(1) b=0(2)
试题分析:(1)由
(2)由(1)知:
因为函数
试题解析:
(1)∵f(x)=-x3+ax2+bx+c,
∴f ′(x)=-3x2+2ax+b. 3分
∵f(x)在(-∞,0)上是减函数,在(0,1)上是增函数,
∴当x=0时,f(x)取到极小值,即f ′(0)=0,
∴b=0. 6分
(2)由(1)知,f(x)=-x3+ax2+c,
∵1是函数f(x)的一个零点,即f(1)=0,∴c=1-a.
∵f′(x)=-3x2+2ax=0的两个根分别为x1=0,x2=
又∵f(x)在(-∞,0)上是减函数,在(0,1)上是增函数,且函数f(x)在R上有三个零点,
∴
∴f(2)=-8+4a+(1-a)=3a-7>
故f(2)的取值范围为
练习册系列答案
相关题目