题目内容

7.在平面直角坐标系xOy内,F为抛物线y2=4x的焦点,A,B是该抛物线上两点,且满足$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,|$\overrightarrow{FA}$|-|$\overrightarrow{FB}$|=4$\sqrt{3}$,则$\overrightarrow{FA}$•$\overrightarrow{FB}$的值是(  )
A.-10B.-12C.-11D.-13

分析 设A(x1,y1),B(x2,y2).由题意可得AB与x轴不垂直,设直线AB的方程为:y=kx+b.(k≠0)与抛物线方程联立可得k2x2+(2kb-4)x+b2=0,△>0化为1-kb>0.利用根与系数的关系可得:y1y2,x1-x2.由于$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,|$\overrightarrow{FA}$|-|$\overrightarrow{FB}$|=4$\sqrt{3}$,可得x1x2+y1y2=-4,(x1+1)-(x2+1)=4$\sqrt{3}$.代入化简即可解出k,b.$\overrightarrow{FA}$•$\overrightarrow{FB}$=(x1-1,y1)•(x2-1,y2)=x1x2-(x1+x2)+1+y1y2,化简整理即可得出.

解答 解:设A(x1,y1),B(x2,y2).
由题意可得AB与x轴不垂直,设直线AB的方程为:y=kx+b.(k≠0)
联立$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=kx+b}\end{array}\right.$,化为k2x2+(2kb-4)x+b2=0,
△>0化为1-kb>0.
∴x1+x2=$\frac{4-2kb}{{k}^{2}}$,x1x2=$\frac{{b}^{2}}{{k}^{2}}$.
∴y1y2=(kx1+b)(kx2+b)=k2x1x2+kb(x1+x2)+b2
x1-x2=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{1-kb}}{{k}^{2}}$.
∵$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,|$\overrightarrow{FA}$|-|$\overrightarrow{FB}$|=4$\sqrt{3}$,
∴x1x2+y1y2=-4,(x1+1)-(x2+1)=4$\sqrt{3}$.
∴(k2+1)x1x2+kb(x1+x2)+b2=$\frac{({k}^{2}+1){b}^{2}}{{k}^{2}}$+$\frac{kb(4-2kb)}{{k}^{2}}$+b2=-4,
$\frac{4\sqrt{1-kb}}{{k}^{2}}$=4$\sqrt{3}$,
分别化为:b+2k=0,1-kb=3k4
联立解得:$\left\{\begin{array}{l}{k=1}\\{b=-2}\end{array}\right.$,$\left\{\begin{array}{l}{k=-1}\\{b=2}\end{array}\right.$.
F(1,0).
则$\overrightarrow{FA}$•$\overrightarrow{FB}$=(x1-1,y1)•(x2-1,y2
=x1x2-(x1+x2)+1+y1y2
=-4+1-(x1+x2
取k=1,b=-2.
x1+x2=8,
∴$\overrightarrow{FA}$•$\overrightarrow{FB}$=-3-8=-11.
取k=-1,b=2,同理可得$\overrightarrow{FA}$•$\overrightarrow{FB}$=-11.
故选:C.

点评 本题考查了直线与抛物线相交问题转化为方程联立可得根与系数的关系、数量积运算性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网