题目内容
在△ABC中,内角A、B、C的对边分别为a、b、c,且满足b2=ac,cosB=
.
(1)求
+
的值;
(2)设
•
=
,求边b的长度.
| 3 |
| 4 |
(1)求
| 1 |
| tanA |
| 1 |
| tanC |
(2)设
| BA |
| BC |
| 3 |
| 2 |
(1)由cosB=
可得,
sinB=
=
.
∵b2=ac,
∴根据正弦定理可得
sin2B=sinAsinC.
又∵在△ABC中,A+B+C=π,
∴
+
=
+
=
=
=
=
=
.
(2)由
•
=
得|
|•|
|cosB=accosB=
,
又∵cosB=
,
∴b2=ac=2,
∴b=
.
| 3 |
| 4 |
sinB=
| 1-cos2B |
| ||
| 4 |
∵b2=ac,
∴根据正弦定理可得
sin2B=sinAsinC.
又∵在△ABC中,A+B+C=π,
∴
| 1 |
| tanA |
| 1 |
| tanC |
| cosA |
| sinA |
| cosC |
| sinC |
=
| cosAsinC+cosCsinA |
| sinAsinC |
=
| sin(A+C) |
| sin2B |
| sinB |
| sin2B |
| 1 |
| sinB |
4
| ||
| 7 |
(2)由
| BA |
| BC |
| 3 |
| 2 |
得|
| BA |
| BC |
| 3 |
| 2 |
又∵cosB=
| 3 |
| 4 |
∴b2=ac=2,
∴b=
| 2 |
练习册系列答案
相关题目