题目内容
已知数列{an}中,a1=1,a2n+1+an2+1=2(an+1an+an+1-an),求数列
,
,…,
,…的前n项和Sn.
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
∵an+12+an2+1=2(an+1an+an+1-an)
∴an+12-2an+1•an+an2-2(an+1-an)+1=0
∴(an+1-an)2-2(an+1-an)+1=0
∴(an+1-an-1)2=0
∴an+1-an=1∴{an}为等差数列
∴an=a1+(n-1)•1=n
∴Sn=
+
+…+
=
+
+…+
=1-
+
-
+…+
-
=1-
=
∴an+12-2an+1•an+an2-2(an+1-an)+1=0
∴(an+1-an)2-2(an+1-an)+1=0
∴(an+1-an-1)2=0
∴an+1-an=1∴{an}为等差数列
∴an=a1+(n-1)•1=n
∴Sn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
=
| 1 |
| 1•2 |
| 1 |
| 2•3 |
| 1 |
| n(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|