题目内容
已知焦点(设为F1,F2)在x轴上的双曲线上有一点
,直线
是双曲线的一条渐近线,当
时,该双曲线的一个顶点坐标是
| A. | B. | C.(2,0) | D.(1,0) |
A
解析考点:双曲线的简单性质.
分析:首先由直线y=
x是渐近线得出b2=3a2,再将p点坐标代入椭圆方程得出x02=
,然后根据
=0?PF1⊥PF2,进而得到|PF1|2+|PF2|2=|F1F2|2并利用c2=a2+b2,求出a即可.
解:∵双曲线在x轴上,直线y=
x是渐近线
∴
=![]()
即b2=3a2
设双曲线方程为
-
="1" F1(-C,0)F2(C,0)
把P(x0,
)代入方程整理得x02=![]()
∵![]()
∴PF1⊥PF2
∴|PF1|2+|PF2|2=|F1F2|2 即(x0+c)2+![]()
+(x0-c)2+
=4c2
整理得a2-c2=-6
∵c2=a2+b2=4a2
∴-3a2=-6
∴a=![]()
故选A.
练习册系列答案
相关题目
已知焦点(设为F1,F2)在x轴上的双曲线上有一点P(x0,
),直线y=
x线的一条渐近线,当
•
=0,双曲线的一个顶点坐标是( )
| 3 |
| 2 |
| 3 |
| FP1 |
| PF2 |
A、(
| ||
B、(
| ||
| C、(2,0) | ||
| D、(1,0) |