题目内容

已知数列{an}中,an>0,前n项的和为Sn,且满足Sn=(an+2)2.若数列{bn}满足bn=(t-1)(t>1),Tn为数列{bn}的前n项的和,求Tn.

解:∵Sn=(an+2)2,

∴Sn-1=(an-1+2)2.

∴Sn-Sn-1=(an+2)2-(an-1+2)2.

∴Sn-Sn-1=(an+an-1+4)(an-an-1).

∴8an=(an+an-1+4)(an-an-1).

∴8an=an2-an-12+4an-4an-1.

∴an2-an-12-4an-4an-1=0.

∴(an-an-1-4)(an+an-1)=0.

∵an>0,∴an-an-1-4=0.

∴an-an-1=4.

∴数列{an}是公差为4的等差数列.

∵a1=(a1+2)2,

∴a1=2.

∴an=a1+(n-1)×4=4n-2.

∴bn==(t-1)n.

∴Tn=(t-1)(t-1)(t≠2),Tn=n(t=2).

Tn=(t-1).

当1<t<2时,Tn=;

当t≥2时,无极限.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网