题目内容
| lim |
| n→∞ |
| |||||
n
|
分析:要求的式子即
即
,再利用极限运算法则求出结果.
| lim |
| n→∞ |
| ||||||||
| n(1+2+3+…+n) |
| lim |
| n→∞ |
| ||
|
解答:解:
=
=
=
=
=
=
,
故选B.
| lim |
| n→∞ |
| |||||
n
|
| lim |
| n→∞ |
| ||||||||
| n(1+2+3+…+n) |
| lim |
| n→∞ |
| ||
|
=
| lim |
| n→∞ |
| (n+1)n(n-1) |
| 3n2(n+1) |
| lim |
| n→∞ |
| n3-n |
| 3n3+3n2 |
| lim |
| n→∞ |
1-
| ||
3+
|
| 1 |
| 3 |
故选B.
点评:本题主要考查组合数的运算性质的应用,极限运算法则的应用,属于基础题.
练习册系列答案
相关题目