题目内容
1.已知数列{an}的前n项和sn,满足sn=n(n-6),数列{bn}满足${b_2}=3,{b_{n+1}}=3{b_n}(n∈{N^*})$(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)记数列{cn}满足${c_n}=\left\{{\begin{array}{l}{{a_n},n为奇数}\\{{b_n},n为偶数}\end{array}}\right.$,求数列{cn}的前n项和Tn.
分析 (Ⅰ)当n≥2时,利用an=Sn-Sn-1计算,进而可知an=2n-7;通过bn+1=3bn可知数列{bn}为等比数列,利用bn=b2•3n-2计算即得结论;
(Ⅱ)通过(I)可知cn=$\left\{\begin{array}{l}{2n-7,}&{n为奇数}\\{{3}^{n-1},}&{n为偶数}\end{array}\right.$,进而分n为奇数、偶数两种情况讨论即可.
解答 解:(Ⅰ)当n=1时,a1=S1=-5,
当n≥2时,an=Sn-Sn-1=2n-7,
又∵当n=1时满足上式,
∴an=2n-7;
∵bn+1=3bn,b2=3,
∴数列{bn}为等比数列,
故其通项公式bn=b2•3n-2=3n-1;
(Ⅱ)由(I)可知cn=$\left\{\begin{array}{l}{2n-7,}&{n为奇数}\\{{3}^{n-1},}&{n为偶数}\end{array}\right.$,
当n为偶数是,Tn=$\frac{\frac{n}{2}(-5+2n-9)}{2}$+$\frac{3(1-{9}^{\frac{n}{2}})}{1-9}$
=$\frac{n(n-7)}{2}$+$\frac{3({3}^{n}-1)}{8}$;
当n为奇数时,Tn=$\frac{\frac{n+1}{2}(-5+2n-7)}{2}$+$\frac{3(1-{9}^{\frac{n-1}{2}})}{1-9}$
=$\frac{(n+1)(n-6)}{2}$+$\frac{3({3}^{n-1}-1)}{8}$;
综上所述,Tn=$\left\{\begin{array}{l}{\frac{(n+1)(n-6)}{2}+\frac{3({3}^{n-1}-1)}{8},}&{n为奇数}\\{\frac{n(n-7)}{2}+\frac{3({3}^{n}-1)}{8},}&{n为偶数}\end{array}\right.$.
点评 本题考查数列的通项及前n项和,考查分类讨论的思想,注意解题方法的积累,属于中档题.
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | $\frac{{\sqrt{13}}}{2}$ | D. | $\frac{{\sqrt{13}}}{3}$ |
| A. | 30 | B. | 35 | C. | 45 | D. | 50 |
| 广告费用x(万元) | 4 | 2 | 3 | 5 |
| 销售额y(万元) | 49 | 26 | 39 | 54 |
| A. | 63.6万 | B. | 65万 | C. | 66.1万 | D. | 67.7万 |