题目内容
等比数列中,已知.
(1)求数列的通项公式;
(2)若分别为等差数列的第3项和第5项,求数列的通项公式.
设函数.
(1)当时,求函数曲线在区间上的最值;
(2)若恒成立,求实数的取值范围.
函数的图象在处的切线在轴上的截距为( )
A. B. C. D.
有一台型号的自动机床在一个小时内不需要工人照看的概率为,有四台这种型号的机床 独立的工作,则在一小时内至多两台机床需要工人照看的概率为( )
已知定义在R上的函数是奇函数,函数的定义域为.
(1)求的值;
(2)若在上递减,根据单调性的定义求实数的取值范围;
(3)在(2)的条件下,若函数在区间上有且仅有两个不同的零点,求实数
的取值范围.
已知函数,且,则等于( )
数列满足(n∈N*),且,则的值是( )
A. B. C. D.
已知等比数列的各项均为正数,且,则( )
A.10 B.50 C.100 D.1000
函数的最小值为__________.