题目内容
已知f(x)=
,定义fn(x)=f(fn-1(x)),其中f1(x)=f(x),则f2012(
)=
.
|
| 1 |
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
分析:先根据条件求出其前几项,找到其规律即可得到结论.
解答:解:∵f(x)=
,定义fn(x)=f(fn-1(x)),其中f1(x)=f(x),
故f1(
)=f(
)=
+
=
,
f2(
)=f[f1(
)]=f(
)=2×
=
.
f3(
)=f[f2(
)]=f(
)=2×
=
.
f4(
)=f[f3(
)]=f(
)=2×
=
.
f5(
)=f[f4(
)]=f(
)=
+
=
.
f6(
)=f[f5(
)]=f(
)=2×
=
.
f7(
)=f[f6(
)]=f(
)=
+
=
=f1(
),故fn(x)是周期为6的周期函数.
故f2012(
)=f2(
)=
,
故答案为
.
|
故f1(
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 2 |
| 7 |
| 10 |
f2(
| 1 |
| 5 |
| 1 |
| 5 |
| 7 |
| 10 |
| 3 |
| 10 |
| 3 |
| 5 |
f3(
| 1 |
| 5 |
| 1 |
| 5 |
| 3 |
| 5 |
| 2 |
| 5 |
| 4 |
| 5 |
f4(
| 1 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
| 2 |
| 5 |
f5(
| 1 |
| 5 |
| 1 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 1 |
| 2 |
| 9 |
| 10 |
f6(
| 1 |
| 5 |
| 1 |
| 5 |
| 9 |
| 10 |
| 1 |
| 10 |
| 1 |
| 5 |
f7(
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 2 |
| 7 |
| 10 |
| 1 |
| 5 |
故f2012(
| 1 |
| 5 |
| 1 |
| 5 |
| 3 |
| 5 |
故答案为
| 3 |
| 5 |
点评:本题主要考察函数的迭代,解决本题的关键在于利用条件求出其周期,属于中档题.
练习册系列答案
相关题目
已知函数f(
-1)=-x,则函数f(x)的表达式为( )
| x |
| A、f(x)=x2+2x+1(x≥0) |
| B、f(x)=x2+2x+1(x≥-1) |
| C、f(x)=-x2-2x-1(x≥0) |
| D、f(x)=-x2-2x-1(x≥-1) |