题目内容
若loga6•log67•log78=-3,设函数f(x)=-a2x+4ax+5
(1)求a的值;
(2)当x≥-2时,求函数f(x)的值域;
(3)当x∈R时,求函数f(x)的单调递增区间.
(1)求a的值;
(2)当x≥-2时,求函数f(x)的值域;
(3)当x∈R时,求函数f(x)的单调递增区间.
(1)∵loga6•log67•log78=-3,∴
×
×
=-3,∴
=-3.,∴lga=-lg2,∴a=2-1=
;
(2)∵a=
,可设(
)x=t,又x≥-2,∴0<t≤(
)-2=4.
从而函数f(x)=-a2x+4ax+5可化为f(t)=-t2+4t+5=-(t-2)2+9,t∈(0,4].
可知f(t)在(0,2]上单调递增,∴5<f(t)≤9;
在[2,4]上单调递减,∴5≤f(t)≤9;
∴f(t)的值域为[5,9].
即函数f(x)的值域为[5,9].
(3)当x∈(-∞,-1]时,t=(
)x单调递减且值域为[2,+∞),
而函数f(t)=-(t-2)2+9在t∈[2,+∞)上单调递减,
故函数f(x)在x∈(-∞,-1]上单调递增,
因此函数f(x)的单调递增区间为(-∞,-1].
| lg6 |
| lga |
| lg7 |
| lg6 |
| lg8 |
| lg7 |
| lg23 |
| lga |
| 1 |
| 2 |
(2)∵a=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
从而函数f(x)=-a2x+4ax+5可化为f(t)=-t2+4t+5=-(t-2)2+9,t∈(0,4].
可知f(t)在(0,2]上单调递增,∴5<f(t)≤9;
在[2,4]上单调递减,∴5≤f(t)≤9;
∴f(t)的值域为[5,9].
即函数f(x)的值域为[5,9].
(3)当x∈(-∞,-1]时,t=(
| 1 |
| 2 |
而函数f(t)=-(t-2)2+9在t∈[2,+∞)上单调递减,
故函数f(x)在x∈(-∞,-1]上单调递增,
因此函数f(x)的单调递增区间为(-∞,-1].
练习册系列答案
相关题目