题目内容
1-| 1 |
| 2 |
| C | 1 n |
| 1 |
| 3 |
| C | 2 n |
| 1 |
| n+1 |
| C | n n |
分析:先根据组合数公式,可得
Cnm-1=
Cn+1m,进而结合题意,有则1=
Cn+11,
Cn1=Cn+12,…,
Cnn=
Cn+1n+1,再结合二项式定理,原式可变形为-
[(-1)1Cn+11+(-1)2Cn+12+(-1)3Cn+13+…+(-1)n+1Cn+1n+1]
即-
[(1-1)n-1],进而可得答案.
| 1 |
| m |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+1 |
即-
| 1 |
| n+1 |
解答:解:
Cnm-1=
=
=
Cn+1m,
则1=
Cn+11,
Cn1=Cn+12,…,
Cnn=
Cn+1n+1,
则1-
+
-…+(-1)n
=
[(-1)0Cn+11+(-1)1Cn+11+(-1)2Cn+13+…+(-1)nCn+1n+1]
=-
[(-1)1Cn+11+(-1)2Cn+12+(-1)3Cn+13+…+(-1)n+1Cn+1n+1]
=-
[(1-1)n-1]
=
.
| 1 |
| m |
| 1 |
| m |
| n! |
| (m-1)!•(n-m+1)! |
| 1 |
| n+1 |
| (n+1)! |
| m!•(n-m+1)! |
| 1 |
| n+1 |
则1=
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+1 |
则1-
| 1 |
| 2 |
| C | 1 n |
| 1 |
| 3 |
| C | 2 n |
| 1 |
| n+1 |
| C | n n |
=
| 1 |
| n+1 |
=-
| 1 |
| n+1 |
=-
| 1 |
| n+1 |
=
| 1 |
| n+1 |
点评:本题考查组合数公式的性质与二项式定理,解题时注意先根据组合数公式变形,进而根据二项式定理,整理可得答案.
练习册系列答案
相关题目