题目内容
已知数列an=(n+1)×(
)n,求{an}的前n项和Sn.
| 9 |
| 10 |
∵an=n+1为等差数列,bn=(
)n为等比数列
∵Sn=2×
+3×(
)2+…+(n+1)•(
)n
∴
Sn=2×(
)2+3×(
)3+…+(n+1)×(
)n
两式相减,
Sn=
+[(
)2+(
)3+…+(
)n]-(n+1)•(
)n+1
=
+
×[1- (
)n ]-(n+1)×(
)n+1
=
-(
)n+1(n+10)
∴Sn=99-9(n+10)×(
)n
| 9 |
| 10 |
∵Sn=2×
| 9 |
| 10 |
| 9 |
| 10 |
| 9 |
| 10 |
∴
| 9 |
| 10 |
| 9 |
| 10 |
| 9 |
| 10 |
| 9 |
| 10 |
两式相减,
| 1 |
| 10 |
| 9 |
| 5 |
| 9 |
| 10 |
| 9 |
| 10 |
| 9 |
| 10 |
| 9 |
| 10 |
=
| 9 |
| 5 |
| 81 |
| 10 |
| 9 |
| 10 |
| 9 |
| 10 |
=
| 99 |
| 10 |
| 9 |
| 10 |
∴Sn=99-9(n+10)×(
| 9 |
| 10 |
练习册系列答案
相关题目