题目内容

12.已知数列{an},{bn}满足a1=2,b1=1,且$\left\{\begin{array}{l}{{a}_{n}=\frac{3}{4}{a}_{n-1}+\frac{1}{4}{b}_{n-1}+1}\\{{b}_{n}=\frac{1}{4}{a}_{n-1}+\frac{3}{4}{b}_{n-1}+1}\end{array}\right.$,则(a4+b4)(a5-b5)=$\frac{9}{16}$.

分析 由a1=2,b1=1,且$\left\{\begin{array}{l}{{a}_{n}=\frac{3}{4}{a}_{n-1}+\frac{1}{4}{b}_{n-1}+1}\\{{b}_{n}=\frac{1}{4}{a}_{n-1}+\frac{3}{4}{b}_{n-1}+1}\end{array}\right.$,可得an-bn=$\frac{1}{2}({a}_{n-1}-{b}_{n-1})$,于是a5-b5=$(\frac{1}{2})^{4}({a}_{1}-{b}_{1})$,同理可得:a4+b4=(a3+b3)+2=(a1+b1)+6,即可得出.

解答 解:∵a1=2,b1=1,且$\left\{\begin{array}{l}{{a}_{n}=\frac{3}{4}{a}_{n-1}+\frac{1}{4}{b}_{n-1}+1}\\{{b}_{n}=\frac{1}{4}{a}_{n-1}+\frac{3}{4}{b}_{n-1}+1}\end{array}\right.$,
∴an-bn=$\frac{1}{2}({a}_{n-1}-{b}_{n-1})$,
∴a5-b5=$(\frac{1}{2})^{4}({a}_{1}-{b}_{1})$=$\frac{1}{16}$;
同理可得:a4+b4=(a3+b3)+2=(a1+b1)+6=9,
则(a4+b4)(a5-b5)=$\frac{1}{16}$×9=$\frac{9}{16}$.
故答案为:$\frac{9}{16}$.

点评 本题考查了数列的递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网