题目内容
已知数列{an}、{bn}满足a1=1,a2=3,| bn+1 |
| bn |
(1)求数列{bn}的通项公式;
(2)求数列{an}的通项公式;
(3)数列{cn}满足cn=log2(an+1)(n∈N*),求Sn=
| 1 |
| c1c3 |
| 1 |
| c3c5 |
| 1 |
| c2n-1c2n+1 |
分析:(1)由题意可知数列{bn}是首项b1=2,公比q=2的等比数列.故bn=b1qn-1=2n.
(2)由an+1-an=2n(n∈N*)可知an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,由此能够求出数列{an}的通项公式.
(3)根据题意,可知
=
=
(
-
),由此能够求出答案.
(2)由an+1-an=2n(n∈N*)可知an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,由此能够求出数列{an}的通项公式.
(3)根据题意,可知
| 1 |
| c2n-1c2n+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:(1)∵
=2 (n∈N*),又b1=a2-a1=3-1=2.
所以数列{bn}是首项b1=2,公比q=2的等比数列.故bn=b1qn-1=2n
(2)an+1-an=2n(n∈N*)
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2++2+1=
=2n-1.
(3)cn=log2(an+1)=log2(2n-1+1)=log22n=n,(n∈N*),
∴
=
=
(
-
)
∴Sn=
+
++
=
(1-
+
-
++
-
)=
(1-
)=
| bn+1 |
| bn |
所以数列{bn}是首项b1=2,公比q=2的等比数列.故bn=b1qn-1=2n
(2)an+1-an=2n(n∈N*)
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2++2+1=
| 1-2n |
| 1-2 |
(3)cn=log2(an+1)=log2(2n-1+1)=log22n=n,(n∈N*),
∴
| 1 |
| c2n-1c2n+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=
| 1 |
| c1c3 |
| 1 |
| c3c5 |
| 1 |
| c2n-1c2n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题考查数列的性质和应用,具有一定的难度,解题时要注意公式的合理选用.
练习册系列答案
相关题目