题目内容

已知数列{an}中,a1=
5
6
a2=
19
36
,且数列{bn}是公差为-1的等差数列,其中bn=log2(an+1-
an
3
)
.数列{cn}是公比为
1
3
的等比数列,其中cn=an+1-
an
2
,则数列{an}的通项公式为an=
6[(
1
2
)n+1-(
1
3
)n+1]
6[(
1
2
)n+1-(
1
3
)n+1]
分析:bn=log2(an+1-
an
3
)
可求得b1,由等差数列通项公式可求bn,从而可得an+1-
an
3
①.由cn=an+1-
an
2
可得c1,由等比数列通项公式可得cn,从而得an+1-
an
2
②,由①②两式可得答案.
解答:解:b1=log2(a2-
a1
3
)
=log2(
19
36
-
5
18
)=log2
1
4
=-2,
所以bn=-2+(n-1)(-1)=-(n+1),则-(n+1)=log2(an+1-
an
3
)
,即an+1-
an
3
=(
1
2
)n+1
①,
c1=a2-
a1
2
=
19
36
-
5
12
=
1
9

所以cn=
1
9
•(
1
3
)n-1=(
1
3
)n+1
,即an+1-
an
2
=(
1
3
)n+1
②,
①-②得,
1
6
an=(
1
2
)n+1-(
1
3
)n+1

所以an=6[(
1
2
)n+1-(
1
2
)n+1]

故答案为:6[(
1
2
)n+1-(
1
3
)n+1]
点评:本题考查等差数列等比数列的通项公式,考查学生的运算求解能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网