题目内容
已知数列{an}中,a1=
,a2=
,且数列{bn}是公差为-1的等差数列,其中bn=log2(an+1-
).数列{cn}是公比为
的等比数列,其中cn=an+1-
,则数列{an}的通项公式为an=
| 5 |
| 6 |
| 19 |
| 36 |
| an |
| 3 |
| 1 |
| 3 |
| an |
| 2 |
6[(
)n+1-(
)n+1].
| 1 |
| 2 |
| 1 |
| 3 |
6[(
)n+1-(
)n+1].
.| 1 |
| 2 |
| 1 |
| 3 |
分析:由bn=log2(an+1-
)可求得b1,由等差数列通项公式可求bn,从而可得an+1-
①.由cn=an+1-
可得c1,由等比数列通项公式可得cn,从而得an+1-
②,由①②两式可得答案.
| an |
| 3 |
| an |
| 3 |
| an |
| 2 |
| an |
| 2 |
解答:解:b1=log2(a2-
)=log2(
-
)=log2
=-2,
所以bn=-2+(n-1)(-1)=-(n+1),则-(n+1)=log2(an+1-
),即an+1-
=(
)n+1①,
c1=a2-
=
-
=
,
所以cn=
•(
)n-1=(
)n+1,即an+1-
=(
)n+1②,
①-②得,
an=(
)n+1-(
)n+1,
所以an=6[(
)n+1-(
)n+1],
故答案为:6[(
)n+1-(
)n+1].
| a1 |
| 3 |
| 19 |
| 36 |
| 5 |
| 18 |
| 1 |
| 4 |
所以bn=-2+(n-1)(-1)=-(n+1),则-(n+1)=log2(an+1-
| an |
| 3 |
| an |
| 3 |
| 1 |
| 2 |
c1=a2-
| a1 |
| 2 |
| 19 |
| 36 |
| 5 |
| 12 |
| 1 |
| 9 |
所以cn=
| 1 |
| 9 |
| 1 |
| 3 |
| 1 |
| 3 |
| an |
| 2 |
| 1 |
| 3 |
①-②得,
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
所以an=6[(
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:6[(
| 1 |
| 2 |
| 1 |
| 3 |
点评:本题考查等差数列等比数列的通项公式,考查学生的运算求解能力,属中档题.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|