题目内容
(2012•安徽模拟)若非零向量
与
的夹角为
,且(3
-2
)⊥
,则6
-
与
的夹角为( )
| a |
| b |
| π |
| 3 |
| a |
| b |
| a |
| a |
| b |
| b |
分析:根据题意,由(3
-2
)⊥
可得(3
-2
)•
=0,将其展开化简可得3|
|=|
|,再根据向量的运算法则可得(6
-
)•
=3|
||
|-|
|2,将3|
|=|
|代入,可得(6
-
)•
=0,由向量垂直的性质,可得答案.
| a |
| b |
| a |
| a |
| b |
| a |
| a |
| b |
| a |
| b |
| b |
| a |
| b |
| b |
| a |
| b |
| a |
| b |
| b |
解答:解:∵(3
-2
)⊥
,即(3
-2
)•
=0,
∴3
2=2
•
,
∴3|
|2=2|
||
|cos
,
∴3|
|=|
|,
(6
-
)•
=6
•
-
2=3|
||
|-|
|2,
又∵3|
|=|
|,
∴(6
-
)•
=3|
||
|-|
|2=0,
则6
-
与
的夹角为
;
故选D.
| a |
| b |
| a |
| a |
| b |
| a |
∴3
| a |
| a |
| b |
∴3|
| a |
| a |
| b |
| π |
| 3 |
∴3|
| a |
| b |
(6
| a |
| b |
| b |
| a |
| b |
| b |
| a |
| b |
| b |
又∵3|
| a |
| b |
∴(6
| a |
| b |
| b |
| a |
| b |
| b |
则6
| a |
| b |
| b |
| π |
| 2 |
故选D.
点评:本题考查利用数量积求向量的夹角,关键是由题意,分析得到|
|与|
|的关系.
| a |
| b |
练习册系列答案
相关题目