题目内容
已知命题p:?x∈(0,+∞),3x>2x,命题q:?x∈(-∞,0),|x|>2-x,则下列命题为真命题的是( )
分析:首先,分别判断命题P和命题Q的真假,然后,借助于“且”“或”“非”构成的复合命题的真值表进行逐个判断.
解答:解:结合指数函数的单调性,
当x∈(0,+∞)时,3x>2x成立,
∴命题P为真命题,
对于命题q:不等式|x|>2-x
当x∈(-∞,0)时,解得
-x>2-x,即0>2,显然不成立,
∴命题q为假命题,
选项A中,p∧q为假命题;
选项B中,(¬p)∧q为假命题;
选项C中,(¬p)∧(¬q)为假命题;
只有选项D为真命题,
故选D.
当x∈(0,+∞)时,3x>2x成立,
∴命题P为真命题,
对于命题q:不等式|x|>2-x
当x∈(-∞,0)时,解得
-x>2-x,即0>2,显然不成立,
∴命题q为假命题,
选项A中,p∧q为假命题;
选项B中,(¬p)∧q为假命题;
选项C中,(¬p)∧(¬q)为假命题;
只有选项D为真命题,
故选D.
点评:本题重点考查命题的真假判断、逻辑联结词“且”“或”“非”及构成的复合命题的真假判断,属于基础题.
练习册系列答案
相关题目
已知命题p:?x∈R,2x2+2x+
<0;命题q:?x∈R,sinx-cosx=
.则下列判断正确的是( )
| 1 |
| 2 |
| 2 |
| A、p是真命题 |
| B、q是假命题 |
| C、¬P是假命题 |
| D、¬q是假命题 |