题目内容
设数列{an}是由正数组成的等比数列,公比为q,Sn是其前n项和.(1)证明
| Sn•Sn+2 |
(2)设bn=
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
分析:(1)由题设知当q=1时,Sn•Sn+2-Sn+12=na1•(n+2)a1-(n+1)2a12=-a12<0;当q≠1时,Sn•Sn+2-Sn+12=
-
=-a12qn<0.由此可知Sn•Sn+2-Sn+12<0.所以
<Sn+1.
(2)方法一:由题意知Tn=
bk=
(
akq3+
akq+
ak)=
q3Sn+
qSn+
Sn,Tn-q2Sn=
(4q(q-2)2+(q-2)2+2)≥2,所以Tn>q2S.
方法二:由题意知Tn=
bk=
(
akq3+
akq+
ak)=
q3Sn+
qSn+
Sn,再由
=
q+
+
,利用均值不等式可知Tn>q2S.
| ||
| (1-q)2 |
| ||
| (1-q)2 |
| Sn•Sn+2 |
(2)方法一:由题意知Tn=
| n |
| k=1 |
| n |
| k=1 |
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
| Sn |
| 15 |
方法二:由题意知Tn=
| n |
| k=1 |
| n |
| k=1 |
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
| Tn |
| q2Sn |
| 4 |
| 15 |
| 4 |
| 5q |
| 2 |
| 5 |
解答:证明:(1)由题设知a1>0,q>0.(1分)
(i)当q=1时,Sn=na1,
于是Sn•Sn+2-Sn+12=na1•(n+2)a1-(n+1)2a12=-a12<0,(3分)
(ii)当q≠1时,Sn=
,
于是Sn•Sn+2-Sn+12=
-
=-a12qn<0.(7分)
由(i)和(ii),得Sn•Sn+2-Sn+12<0.
所以Sn•Sn+2<Sn+12,
<Sn+1.(8分)
(2)方法一:bn=
an+3+
an+1+
an=
anq3+
anq+
an,(11分)
Tn=
bk=
(
akq3+
akq+
ak)=
q3Sn+
qSn+
Sn,
Tn-q2Sn=
(4q3-15q2+12q+6),(13分)
=
(4q(q-2)2+(q-2)2+2)≥2>0,(15分)
所以Tn>q2S.(16分)
方法二:Tn=
bk=
(
akq3+
akq+
ak)=
q3Sn+
qSn+
Sn,(11分)
由
=
q+
+
,(13分)
因为q>0,所以
q+
≥2
=
(当且仅当
q=
,即q=
时取“=”号),
因为
+
=
>1,
所以
>1,即Tn>q2S.(16分)
(i)当q=1时,Sn=na1,
于是Sn•Sn+2-Sn+12=na1•(n+2)a1-(n+1)2a12=-a12<0,(3分)
(ii)当q≠1时,Sn=
| a1(1-qn) |
| 1-q |
于是Sn•Sn+2-Sn+12=
| ||
| (1-q)2 |
| ||
| (1-q)2 |
由(i)和(ii),得Sn•Sn+2-Sn+12<0.
所以Sn•Sn+2<Sn+12,
| Sn•Sn+2 |
(2)方法一:bn=
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
Tn=
| n |
| k=1 |
| n |
| k=1 |
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
Tn-q2Sn=
| Sn |
| 15 |
=
| Sn |
| 15 |
所以Tn>q2S.(16分)
方法二:Tn=
| n |
| k=1 |
| n |
| k=1 |
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
| 4 |
| 15 |
| 4 |
| 5 |
| 2 |
| 5 |
由
| Tn |
| q2Sn |
| 4 |
| 15 |
| 4 |
| 5q |
| 2 |
| 5 |
因为q>0,所以
| 4 |
| 15 |
| 4 |
| 5q |
|
| 8 |
| 15 |
| 3 |
(当且仅当
| 4 |
| 15 |
| 4 |
| 5q |
| 3 |
因为
| 8 |
| 15 |
| 3 |
| 2 |
| 5 |
6+8
| ||
| 15 |
所以
| Tn |
| q2Sn |
点评:本题考查数列的性质和综合应用,难度较大,解题时要认真审题,仔细解答,注意公式的合理选用.
练习册系列答案
相关题目