题目内容
已知{an}是递增数列,其前n项和为Sn,a1>1,且10Sn=(2an+1)(an+2),n∈N+.
(Ⅰ)求数列{an}的通项an;
(Ⅱ)设bn=an-
,若对于任意的n∈N+.,不等式
≤(1+
)(1+
)…(1+
)-
恒成立,求正整数m的最大值.
(Ⅰ)求数列{an}的通项an;
(Ⅱ)设bn=an-
| n-3 |
| 2 |
| ||
| 31 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 | ||
|
分析:(Ⅰ)令n=1代入10Sn=(2an+1)(an+2),求得a1的值,根据 an=
,转化为等差数列,可以求得数列{an}的通项an;
(Ⅱ)把数列{an}的通项an代入bn=an-
,要使得不等式
≤(1+
)(1+
)…(1+
)•
恒成立只需
≤(1+
)(1+
)…(1+
)•
最小值即可,转化为求某个数列的最值问题.
|
(Ⅱ)把数列{an}的通项an代入bn=an-
| n-3 |
| 2 |
| ||
| 31 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 | ||
|
| ||
| 31 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 | ||
|
解答:解:(Ⅰ)∵10Sn=(2an+1)(an+3),
∴10a1=(2a1+1)(a1+2),得2a12-5a1+2=0,
解得a1=2,或 a1=
.
由于a1>1,所以a1=2.
∵10Sn=(2an+1)(an+2),∴10Sn=2an2+5an+2.
故10an+1=10Sn+1-10Sn=2an+12+5an+1+2-2an2-5an-2,
整理,得2(an+12-an2)-5(an+1+an)=0,
即(an+1+an)[2(an+1-an)-5]=0.
因为{an}是递增数列,且a1=2,故an+1+an≠0,
因此 an+1-an=
.
则数列{an}是以2为首项,
为公差的等差数列.
所以 an=2+
(n-1)=
(5n-1).
(Ⅱ)bn=an-
=
(5n-1)-
=2n+1,
不等式
≤(1+
)(1+
)…(1+
)•
=
•
•
…
•
=
•
•
…
•
.
设f(n)=
•
•
…
•
,
则
=
=
•
=
=
>
=
=
=1.
所以f(n+1)>f(n),即当n增大时,f(n)也增大.
要使不等式
≤(1+
)(1+
)…(1+
)•
对于任意的n∈N*恒成立,只需
≤f(n)min即可.
因为f(n)min=f(1)=
•
=
,所以
≤
,
即m≤
=
=8
.
所以,正整数m的最大值为8.
∴10a1=(2a1+1)(a1+2),得2a12-5a1+2=0,
解得a1=2,或 a1=
| 1 |
| 2 |
由于a1>1,所以a1=2.
∵10Sn=(2an+1)(an+2),∴10Sn=2an2+5an+2.
故10an+1=10Sn+1-10Sn=2an+12+5an+1+2-2an2-5an-2,
整理,得2(an+12-an2)-5(an+1+an)=0,
即(an+1+an)[2(an+1-an)-5]=0.
因为{an}是递增数列,且a1=2,故an+1+an≠0,
因此 an+1-an=
| 5 |
| 2 |
则数列{an}是以2为首项,
| 5 |
| 2 |
所以 an=2+
| 5 |
| 2 |
| 1 |
| 2 |
(Ⅱ)bn=an-
| n-3 |
| 2 |
| 1 |
| 2 |
| n-3 |
| 2 |
不等式
| ||
| 31 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 | ||
|
=
| b1+1 |
| b1 |
| b2+1 |
| b2 |
| b3+1 |
| b3 |
| bn+1 |
| bn |
| 1 | ||
|
=
| 4 |
| 3 |
| 6 |
| 5 |
| 8 |
| 7 |
| 2n+2 |
| 2n+1 |
| 1 | ||
|
设f(n)=
| 4 |
| 3 |
| 6 |
| 5 |
| 8 |
| 7 |
| 2n+2 |
| 2n+1 |
| 1 | ||
|
则
| f(n+1) |
| f(n) |
| ||||||||||||||
|
=
| 2n+4 |
| 2n+3 |
| ||
|
| 2n+4 | ||
|
=
| 2n+4 | ||
|
| 2n+4 | ||
|
| 2n+4 | ||
|
| 2n+4 |
| 2n+4 |
所以f(n+1)>f(n),即当n增大时,f(n)也增大.
要使不等式
| ||
| 31 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 | ||
|
对于任意的n∈N*恒成立,只需
| ||
| 31 |
因为f(n)min=f(1)=
| 4 |
| 3 |
| 1 | ||
|
4
| ||
| 15 |
| ||
| 31 |
4
| ||
| 15 |
即m≤
| 4×31 |
| 15 |
| 124 |
| 15 |
| 4 |
| 15 |
所以,正整数m的最大值为8.
点评:此题是个难题.考查根据 an=
求数列通项公式,体现了分类讨论的思想.特别是(2)的设置,增加了题目的难度,对于恒成立问题,一般采取分离参数的方法,转化为求最值问题,体现 转化的思想.并根据数列的单调性求数列的最值.
|
练习册系列答案
相关题目