题目内容
已知数列{an}中,an=
,Sn为其前n项的和,则
=______.
| (2n)2 |
| (2n-1)(2n+1) |
| lim |
| n→∞ |
| Sn |
| n |
an=
=
=1+
=1+
(
-
)
∴Sn=n+
(1-
+
-
+…+
-
)
=n+
(1-
)=n+
,
∴
=
(1+
)=1
故答案为:1
| (2n)2 |
| (2n-1)(2n+1) |
| 4n2 |
| 4n2-1 |
| 1 |
| 4n2-1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=n+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=n+
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
∴
| lim |
| n→∞ |
| Sn |
| n |
| lim |
| n→∞ |
| 1 |
| 2n+1 |
故答案为:1
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|