题目内容
【题目】如图,在三棱锥
中,
,
,
,
,
,
分别为线段
,
上的点,且
,
.
![]()
(1)证明:
;
(2)若
,求二面角
的余弦值.
【答案】(1)见证明;(2)![]()
【解析】
(1)证明BC⊥平面SAC,即可推出SC⊥平面ABC,从而得到MN⊥平面SCM,即可证明MN⊥SM.(2)以C为原点,以
,
,
为
轴,
轴,
轴的正方向建立空间直角坐标系
,求出平面SAM和平面SMN的法向量,利用空间向量的夹角的余弦,求解二面角A﹣SM﹣N的余弦值.
(1)证明:由
,
,且
,则
平面
,
平面
,故
,又
,
,则
平面
,
平面
,故
.
因为
,
,所以
,故
.
又因为
,所以
平面
.
又
平面
,则
.
(2)解:由(1)知,
,
,
两两相互垂直,
![]()
如图是以
为坐标原点,分别以
,
,
为
轴,
轴,
轴的正方向建立空间直角坐标系
,
则
,
,
,
,
,
,
,
.
设平面
的法向量为
,则
,令
,得
.
设平面
的法向量为
,
则
,令
,则
,
,故
.
所以
,
由图可知二面角
为钝角,
故二面角
的余弦值为
.
练习册系列答案
相关题目
【题目】手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式.在某市,随机调查了200名顾客购物时使用手机支付的情况,得到如下的2×2列联表,已知从使用手机支付的人群中随机抽取1人,抽到青年的概率为
.
(I)根据已知条件完成2×2列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”?
2×2列联表:
青年 | 中老年 | 合计 | |
使用手机支付 | 120 | ||
不使用手机支付 | 48 | ||
合计 | 200 |
(Ⅱ)现采用分层抽样的方法从这200名顾客中按照“使用手机支付”和“不使用手机支付”抽取一个容量为10的样本,再从中随机抽取3人,求这三人中“使用手机支付”的人数的分布列及期望.
附:![]()
| 0.05 | 0.025 | 0.010 | 0.005 |
| 3.841 | 5.024 | 6.635 | 7.879 |