题目内容

【题目】如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥CD.

(1)求证:CD是⊙O的切线;
(2)若AD=1,OA=2,求AC的值.

【答案】
(1)

证明:连接OC,如图所示:

∵AB是⊙O直径,

∴∠ACB=90°,

∵OB=OC,

∴∠B=∠BCO,

又∵∠ACD=∠B,

∴∠OCD=∠OCA+∠ACD=∠OCA+∠BCO=∠ACB=90°,

即OC⊥CD,

∴CD是⊙O的切线;


(2)

解:∵AD⊥CD,

∴∠ADC=∠ACB=90°,

又∵∠ACD=∠B,

∴△ACB∽△ADC,

∴AC2=ADAB=1×4=4,

∴AC=2.


【解析】本题考查了切线的判定、等腰三角形的性质、相似三角形的判定与性质;熟练掌握切线的判定,证明三角形相似是解决问题(2)的关键.(1)连接OC,由圆周角定理得出∠ACB=90°,由等腰三角形的性质得出∠B=∠BCO,证出∠OCD=∠OCA+∠BCO=∠ACB=90°,即可得出结论;(2)证明△ACB∽△ADC,得出AC2=ADAB,即可得出结果.
【考点精析】掌握切线的判定定理是解答本题的根本,需要知道切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网