题目内容
【题目】甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.
(2)当产品中的微量元素x,y满足x≥175,且y≥75,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量.
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值.
【答案】(1)35;(2)14;(3)![]()
【解析】解:(1)
=7,5×7=35,即乙厂生产的产品数量为35件.
(2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品中的优等品,故乙厂生产有大约35×
=14(件)优等品,
(3)X的取值为0,1,2.
P(X=0)=
=
,
P(X=1)=
=
,
P(X=2)=
=
.
所以X的分布列为
X | 0 | 1 | 2 |
P |
|
|
|
故X的均值为E(X)=0×
+1×
+2×
=
.
练习册系列答案
相关题目