题目内容
已知函数y=f(x)对任意x,y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-
.
(1)判断并证明f(x)在R上的单调性;
(2)求f(x)在[-3,3]上的最值.
(1)证明见解析(2)f(x)在[-3,3]上最大值为2,最小值为-2
解析:
(1)f(x)在R上是单调递减函数
证明如下:
令x=y=0,f(0)=0,令x=-y可得:f(-x)=-f(x),在R上任取x1<x2,则x2-x1>0,
∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).又∵x>0时,f(x)<0,
∴f(x2-x1)<0,即f(x2)<f(x1).由定义可知f(x)在R上为单调递减函数.
(2)∵f(x)在R上是减函数,
∴f(x)在[-3,3]上也是减函数.
∴f(-3)最大,f(3)最小.f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3×(-
=-2.
∴f(-3)=-f(3)=2.即f(x)在[-3,3]上最大值为2,最小值为-2.
练习册系列答案
相关题目
已知函数y=f(x+
)为奇函数,设g(x)=f(x)+1,则g(
)+g(
)+g(
)+g(
)+…+g(
)=( )
| 1 |
| 2 |
| 1 |
| 2011 |
| 2 |
| 2011 |
| 3 |
| 2011 |
| 4 |
| 2011 |
| 2010 |
| 2011 |
| A、1005 | B、2010 |
| C、2011 | D、4020 |