题目内容
已知函数f(x)=x2+2x+alnx(a∈R).当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围
- A.(-∞,1)
- B.(-∞,2)
- C.(-∞,1]
- D.(-∞,2]
D
分析:不等式f(2t-1)≥2f(t)-3可化为2t2-4t+2≥alnt2-aln(2t-1),即2t2-alnt2≥2(2t-1)-aln(2t-1),令h(x)=2x-alnx(x≥1),要使上式成立,只需要h(x)=2x-alnx(x≥1)是增函数即可,从而可求实数a的取值范围.
解答:∵f(x)=x2+2x+alnx(a∈R).
当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,
∴2t2-4t+2≥alnt2-aln(2t-1)
∴2t2-alnt2≥2(2t-1)-aln(2t-1)
令h(x)=2x-alnx(x≥1),则问题可化为h(t2)≥h(2t-1)
∵t≥1,∴t2≥2t-1
要使上式成立,只需要h(x)=2x-alnx(x≥1)是增函数即可
即g′(x)=2-
≥0在[1,+∞)上恒成立,
即a≤2x在[1,+∞)上恒成立,故a≤2
∴实数a的取值范围是(-∞,2].
故选D.
点评:本题重点考查导数知识的运用,考查恒成立问题,同时考查学生分析解决问题的能力,有综合性.
分析:不等式f(2t-1)≥2f(t)-3可化为2t2-4t+2≥alnt2-aln(2t-1),即2t2-alnt2≥2(2t-1)-aln(2t-1),令h(x)=2x-alnx(x≥1),要使上式成立,只需要h(x)=2x-alnx(x≥1)是增函数即可,从而可求实数a的取值范围.
解答:∵f(x)=x2+2x+alnx(a∈R).
当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,
∴2t2-4t+2≥alnt2-aln(2t-1)
∴2t2-alnt2≥2(2t-1)-aln(2t-1)
令h(x)=2x-alnx(x≥1),则问题可化为h(t2)≥h(2t-1)
∵t≥1,∴t2≥2t-1
要使上式成立,只需要h(x)=2x-alnx(x≥1)是增函数即可
即g′(x)=2-
即a≤2x在[1,+∞)上恒成立,故a≤2
∴实数a的取值范围是(-∞,2].
故选D.
点评:本题重点考查导数知识的运用,考查恒成立问题,同时考查学生分析解决问题的能力,有综合性.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|