题目内容

6.已知等差数列{an}的前n项和为Sn,a2=3,S5=25,正项数列{bn}满足${b_1}{b_2}{b_3}…{b_n}={({\sqrt{3}})^{s_n}}$.
(1)求数列{an},{bn}的通项公式;
(2)若(-1)nλ<2+$\frac{{{{({-1})}^{n+1}}}}{a_n}$对一切正整数n均成立,求实数λ的取值范围.

分析 (1)由已知利用等差数前n项和、通项公式能求出首项和公差,由此能求出数列{an}的通项公式;由${b_1}{b_2}…{b_n}={({\sqrt{3}})^{S_n}}$,得${b_1}{b_2}{b_3}…{b_{n-1}}={({\sqrt{3}})^{{S_{n-1}}}}$,两式相除能求出数列{bn}的通项公式.
(2)由已知条件根据n为奇数和n为偶数两种情况分类讨论,能求出实数λ的取值范围.

解答 解:(1)∵等差数列{an}的前n项和为Sn,S5=25,
∴S5=5a3=25,故a3=5,
又a2=3,则d=a3-a2=5-3=2,故an=2n-1,
∵正项数列{bn}满足${b_1}{b_2}…{b_n}={({\sqrt{3}})^{S_n}}$,
∴${b_1}{b_2}{b_3}…{b_{n-1}}={({\sqrt{3}})^{{S_{n-1}}}}$,n≥2
两式相除得${b_n}={({\sqrt{3}})^{2n-1}}({n≥2})$,
又${b_1}={({\sqrt{3}})^{S_1}}={({\sqrt{3}})^1}$满足上式,
故${b_n}={({\sqrt{3}})^{2n-1}}({n≥1})$
(2)${({-1})^n}λ<2+\frac{{{{({-1})}^{n+1}}}}{a_n}$,即(-1)nλ<2+$\frac{(-1)^{n+1}}{2n-1}$对一切正整数n均成立,
①n为奇数时,$λ>-2-\frac{1}{2n-1}$恒成立,则λ≥-2
②n为偶数时,$λ<2-\frac{1}{2n-1}$恒成立,则$λ<\frac{5}{3}$
综上$-2≤λ<\frac{5}{3}$.

点评 本题考查数列的通项公式的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意等差数列的性质和分类讨论思想的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网