题目内容
设有关于x的一元二次方程x2+2ax+b2="0." (l)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;(2)若a是从区间[0,t+1]任取的一个数,b是从区间[0,t]任取的一个数,其中t满足2≤t≤3,求方程有实根的概率,并求出其概率的最大值.
(1)
;(2)
.
试题分析:(1)本小题为古典概型求概率的问题,先求出a与b构成的实数对(a,b)总个数即基本事件的总数,再一一进行检验符合
试题解析:(1)总的基本事件有12个,即a,b构成的实数对(a,b)有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).设事件A为“方程有实根”,包含的基本事件有(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)共9个,所以事件A的概率为P(A)=
(2)a,b构成的实数对(a,b)满足条件有0≤a≤t+1,0≤b≤t,a≥b,设事件B为“方程有实根”,则此事件满足几何概型. 如图,
练习册系列答案
相关题目