题目内容
| 在某学校组织的一次蓝球定点投蓝训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次。某同学在A处的命中率q1为0.25,在B处的命中率为q2。该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为 | ||||||||||||
(Ⅱ)求随机变量ξ的数学期量Eξ; (Ⅲ)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。 |
| 解:(Ⅰ)设该同学在A处投中为事件A,在B处投中为事件B, 则事件A,B相互独立, 且 P(A)=0.25, 根据分布列知: ξ=0时, 所以, (Ⅱ)当ξ=2时, 当ξ=3时, 当ξ=4时, 当ξ=5时, 所以,随机变量ξ的分布列为
(Ⅲ)该同学选择都在B处投篮得分超过3分的概率为 该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72, 由此看来该同学选择都在B处投篮得分超过3分的概率大。 |
练习册系列答案
相关题目
(本小题满分10分)
在某学校组织的一次蓝球定点投蓝训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次。某同学在A处的命中率
为0.25,在B处的命中率为
.该同学选择先在A处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
|
|
0 |
2 |
3 |
4 |
5 |
|
|
0.03 |
|
|
|
|
求
的值;
求随机变量
的数学期量
;
试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
在某学校组织的一次蓝球定点投蓝训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次。某同学在A处的命中率
为0.25,在B处的命中率为
.该同学选择先在A处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
| 0 | 2 | 3 | 4 | 5 |
| 0.03 |
|
|
|
|
求
的值;
求随机变量
的数学期量
;
试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。