题目内容
(2012•怀化二模)已知数列{an}中,a3=2,a7=1,若{
}为等差数列,则a11等于( )
| 1 |
| 2an |
分析:设公差为d,由题意可得
=
+4d,求出d 的值,再由
=
+4d,求出a11的值.
| 1 |
| 2a7 |
| 1 |
| 2a3 |
| 1 |
| 2a11 |
| 1 |
| 2a7 |
解答:解:∵数列{an}中,a3=2,a7=1,且数列{
}为等差数列,设公差为d,
∴
=
+4d,即
=
+4d,∴d=
.
∴
=
+4d=
+
=
,故 2a11=
,a11=
,
故选B.
| 1 |
| 2an |
∴
| 1 |
| 2a7 |
| 1 |
| 2a3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 16 |
∴
| 1 |
| 2a11 |
| 1 |
| 2a7 |
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
| 4 |
| 3 |
| 2 |
| 3 |
故选B.
点评:本题主要考查等差数列的定义和性质、通项公式,求出公差的值,是解题的关键,属于中档题.
练习册系列答案
相关题目