题目内容
7.y=$\sqrt{lo{g}_{\frac{1}{2}}(3x-2)}$的定义域是($\frac{2}{3},1$].分析 由根式内部的代数式大于等于0,然后求解对数不等式得答案.
解答 解:由$lo{g}_{\frac{1}{2}}(3x-2)≥0$,得0<3x-2≤1,
∴$\frac{2}{3}<x≤1$,
∴y=$\sqrt{lo{g}_{\frac{1}{2}}(3x-2)}$的定义域是($\frac{2}{3},1$].
故答案为:($\frac{2}{3},1$].
点评 本题考查函数的定义域及其求法,考查对数不等式的解法,是基础题.
练习册系列答案
相关题目
2.正四棱锥的侧棱长与底面边长都相等,E是SB的中点,则AE与SD所成角的余弦值为( )
| A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |