题目内容
数列1| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 27 |
| 1 |
| 81 |
分析:先将1
+2
+3
+4
+n
分离成两部分,再根据等差数列和等比数列的前n项和公式进行求解即可得到答案.
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 27 |
| 1 |
| 81 |
| 1 |
| 3n |
解答:解:∵1
+2
+3
+4
+n
=(1+2+3+…+n)+(
+
+…+
)
=
+
=
-
故答案为:
-
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 27 |
| 1 |
| 81 |
| 1 |
| 3n |
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 3n |
=
| n(n+1) |
| 2 |
| ||||
1-
|
| n2+n+1 |
| 2 |
| 1 |
| 2•3n |
故答案为:
| n2+n+1 |
| 2 |
| 1 |
| 2•3n |
点评:本题主要考查数列求和的裂项法、等差数列和等比数列的前n项和公式.考查学生的运算能力.
练习册系列答案
相关题目