题目内容
【题目】椭圆C:
=1的右焦点F,过焦点F的直线l0⊥x轴,P(x0 , y0)(x0y0≠0)为C上任意一点,C在点P处的切线为l,l与l0相交于点M,与直线l1:x=3相交于N.
(I) 求证;直线
=1是椭圆C在点P处的切线;
(Ⅱ)求证:
为定值,并求此定值;
(Ⅲ)请问△ONP(O为坐标原点)的面积是否存在最小值?若存在,请求出最小及此时点P的坐标;若不存在,请说明理由.
【答案】证明:(Ⅰ)∵P(x0 , y0)在椭圆C:
上,
∴
,即
,
∴直线
过点P(x0 , y0),
由
,消去y,并利用
,得
,
即6x2﹣12x0x+6x02=0,即6(x﹣x0)2=0,∴x=x0 ,
∴直线
=1与椭圆C在点P处有且仅有一个交点,
综上,直线
是椭圆C在点P处的切线.
(Ⅱ)在
中,令x=1,得y=
,∴M(1,
),
在
中,令x=3,得y=
,∴N(3,
),
又F(1,0),∴|FM|=|
|=2|
|,
|FN|=
=2
=2
=2
,
∴
=
为定值.
解:(Ⅲ)在直线
中,令y=0,得x=
,
∴切线l与x轴的交点为G(
,0),
S△ONP=
=
= ![]()
=
|
||
|
=
|
||
|
= ![]()
=|
|=
,
S△ONP=
=
=
=
,
令3﹣x0=
,由﹣
,得
,且t
,
且
=
=
=
=
,
∴当t=
,x0=1时,△ONP(O为坐标原点)的面积是存在最小值{S△ONP}min=
,
此时P(1,
).![]()
【解析】(Ⅰ)推导出直线
过点P(x0 , y0),由
及
,得
,由此能证明直线
是椭圆C在点P处的切线.(Ⅱ)在
中,令x=1,M(1,
),令x=3,得N(3,
),由此求出|FM|,|FN|,由此能证明
为定值.(Ⅲ)求出切线l与x轴的交点为G(
,0),推导出S△ONP=
=
,令3﹣x0=
,利用配方法能求出△ONP的面积的最小值及对应的P点坐标.
【题目】甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别如下图所示。
甲 | 0 | 1 | 0 | 2 | 2 | 0 | 3 | 1 | 2 | 4 |
乙 | 2 | 3 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 1 |
从数据上看, ________________机床的性能较好(填“甲”或者“乙”).