题目内容
设α是锐角,若tan(α+
)=
,则sin(2α+
)的值为( )
| π |
| 6 |
| 3 |
| 4 |
| π |
| 12 |
分析:由α是锐角,tan(α+
)=
,可求得sin(α+
),由二倍角公式可求得sin2(α+
),coss2(α+
),从而可求得sin(2α+
)的值.
| π |
| 6 |
| 3 |
| 4 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 12 |
解答:解:∵α是锐角,tan(α+
)=
,
∴sin(α+
)=
,cos(α+
)=
,
∴sin2(α+
)=2×
×
=
,
coss2(α+
)=2cos2(α+
)-1=
,
∵2α+
=2(α+
)-
,
∴sin(2α+
)=sin[2(α+
)-
]
=sin2(α+
)cos
-coss2(α+
)sin
=
×
-
×
=
.
故选C.
| π |
| 6 |
| 3 |
| 4 |
∴sin(α+
| π |
| 6 |
| 3 |
| 5 |
| π |
| 6 |
| 4 |
| 5 |
∴sin2(α+
| π |
| 6 |
| 3 |
| 5 |
| 4 |
| 5 |
| 24 |
| 25 |
coss2(α+
| π |
| 6 |
| π |
| 6 |
| 7 |
| 25 |
∵2α+
| π |
| 12 |
| π |
| 6 |
| π |
| 4 |
∴sin(2α+
| π |
| 12 |
| π |
| 6 |
| π |
| 4 |
=sin2(α+
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
| π |
| 4 |
=
| 24 |
| 25 |
| ||
| 2 |
| 7 |
| 25 |
| ||
| 2 |
=
17
| ||
| 50 |
故选C.
点评:本题考查二倍角的正弦与余弦,考查突出考查观察与“拼凑角”的能力,考查两角差的正弦,属于中档题.
练习册系列答案
相关题目