题目内容

已知函数f(x)(x∈R且x>0),对于定义域内任意x、y恒有f(xy)=f(x)+f(y),并且x>1时,f(x)>0恒成立。
(1)求f(1);
(2)证明方程f(x)=0有且仅有一个实根;
(3)若x∈[1,+∞)时,不等式恒成立,求实数a的取值范围.
解:(1)令x=y=1,则,∴
(2)任取,则
由题意,
又定义域内任意x、y恒有f(xy)=f(x)+f(y),所以f(xy)- f(y)=f(x),


∴函数f(x)在其定义域内为增函数,由(1)和f(1)=0,所以1为方程f(x)=0的一个实根,若还存在一个,且>0,使得
因为函数f(x)在其定义域内为增函数,必有
故方程f(x)=0有且仅有一个实根。
(3)由(2)知函数f(x)在其定义域内为增函数,
当x∈[1,+∞)时,不等式恒成立,
,即
在x∈[1,+∞)时,恒成立,

∴a>-2。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网