题目内容
设f(x)=sin2x+mcos2x,若对一切x∈R,都有f(x)≤f(
),则f(
)=______.
| π |
| 8 |
| π |
| 24 |
由题意知:
f(x)=sin2x+mcos2x=
sin(2x+φ),(sinφ=
,cosφ=
)
由题意得:当x=
时函数f(x)=sin2x+mcos2x取到最值±
,
将x=
代入可得:sin(2×
)+mcos(2×
)=
(m+1)=±
,即m=1
∴f(x)=sin2x+mcos2x=sin2x+cos2x=
sin(2x+
),
则f(
)=
sin(2×
+
)=
sin
=
.
故答案为:
f(x)=sin2x+mcos2x=
| m2+1 |
| m | ||
|
| 1 | ||
|
由题意得:当x=
| π |
| 8 |
| m2+1 |
将x=
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| ||
| 2 |
| m2+1 |
∴f(x)=sin2x+mcos2x=sin2x+cos2x=
| 2 |
| π |
| 4 |
则f(
| π |
| 24 |
| 2 |
| π |
| 24 |
| π |
| 4 |
| 2 |
| π |
| 3 |
| ||
| 2 |
故答案为:
| ||
| 2 |
练习册系列答案
相关题目
设|φ|<
,函数f(x)=sin2(x+φ).若f(
)=
,则φ等于( )
| π |
| 4 |
| π |
| 4 |
| 3 |
| 4 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|