题目内容
某城市的交通道路如图 ,从城市的东南角到城市西北角,不经过十字道路维修处,最 近的走法种数有 .
已知函数.
(1)求函数的最小正周期;
(2)求函数在上的值域.
已知曲线的极坐标方程为,曲线为参数).
(1)求曲线,的普通方程;
(2)若点在曲线上运动,试求出到曲线的距离的范围.
从装有个红球和 个白球的口袋内任取个,则互斥但不对立的两个事件是( )
A.至少一个白球与都是白球 B.至少一个白球与至少一个红球
C.恰有一个白球与 恰有个白球 D.至少一个白球与都是红球
用这六个数字.
(1)能组成多少个无重复数字的四位偶数?
(2)能组成多少个无重复数字且为的倍数的五位数?
(3)能组成多少个无重复数字且比大的四位数?
如图,在杨辉三角形中,斜线的上方从 按箭头所示方向可以构成一个“锯齿形”的数列: ,记此数列的前项之和为,则的值为( )
A. B. C. D.
某学习小组男女生共人,现从男生中选人,女生中选人,分别去做种不同的工作,共有 种不同的选法,则男女生人数为( )
已知等差数列的前项之和为,前项和为,则它的前项的和为( )
A. B. C. D.
从一批产品中取出三件,设“三件产品全不是次品” ,“三件产品全是次品”“三件产品不全是次品” ,则下列结论正确是( )
A.与互斥 B.与互斥
C.任两个均互斥 D.任两个均不互斥