题目内容
(07年湖北卷理)若数列满足(为正常数,),则称为“等方比数列”.
甲:数列是等方比数列;乙:数列是等比数列,则( )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
(14分)若数列满足其中为常数,则称数列为等方差数列.已知等方差数列满足.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前项和;
若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得:
①若方程有两相异实根,则数列通项可以写成,(其中是待定常数);
②若方程有两相同实根,则数列通项可以写成,(其中是待定常数);
再利用可求得,进而求得.
根据上述结论求下列问题:
(1)当,()时,求数列的通项公式;
(2)当,()时,求数列的通项公式;
(3)当,()时,记,若能被数整除,求所有满足条件的正整数的取值集合.
若数列满足(为正常数,),则称为“等方比数列”.
甲:数列是等方比数列; 乙:数列是等比数列,则( )