题目内容
曲线y=
x2在点(1,
)处的切线的倾斜角为( )
| 1 |
| 2 |
| 1 |
| 2 |
| A.1 | B.-
| C.
| D.
|
由y=
x2得,y′=x,∴y′|x=1=1,
即曲线y=
x2在点(1,
)处的切线的斜率为1,
设曲线y=
x2在点(1,
)处的切线的倾斜角为α,
则tanα=1,又0≤α<π,∴α=
.
故曲线y=
x2在点(1,
)处的切线的倾斜角为
.
故选C.
| 1 |
| 2 |
即曲线y=
| 1 |
| 2 |
| 1 |
| 2 |
设曲线y=
| 1 |
| 2 |
| 1 |
| 2 |
则tanα=1,又0≤α<π,∴α=
| π |
| 4 |
故曲线y=
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 4 |
故选C.
练习册系列答案
相关题目