题目内容
(2013•南通三模)已知数列{an}是首项为1,公差为d的等差数列,数列{bn}是首项为1,公比为q(q>1)的等比数列.
(1)若a5=b5,q=3,求数列{an•bn}的前n项和;
(2)若存在正整数k(k≥2),使得ak=bk.试比较an与bn的大小,并说明理由.
(1)若a5=b5,q=3,求数列{an•bn}的前n项和;
(2)若存在正整数k(k≥2),使得ak=bk.试比较an与bn的大小,并说明理由.
分析:(1)由q=3,b1=1可求得b5,从而得到a5,由a1=1及通项公式可求得an,利用错位相减法即可求得数列{an•bn}的前n项和;
(2)由ak=bk,即1+(k-1)d=qk-1,得d=
,an=1+(n-1)
,作差bn-an变形,然后分1<n<k时,当n>k时,n=1三种情况讨论讨论差的符号即可作出大小比较;
(2)由ak=bk,即1+(k-1)d=qk-1,得d=
| qk-1-1 |
| k-1 |
| qk-1-1 |
| k-1 |
解答:解:(1)依题意,a5=b5=b1q5-1=1×34=81,
故d=
=
=20,
所以an=1+20(n-1)=20n-19,
令Sn=1×1+21×3+41×32+…+(20n-19)•3n-1,①
则3Sn=1×3+21×32+…+(20n-39)•3n-1+(20n-19)•3n,②
①-②得,-2Sn=1+20×(3+32+…+3n-1)-(20n-19)•3n=1+20×
-(20n-19)•3n=(29-20n)•3n-29,
所以Sn=
.
(2)因为ak=bk,所以1+(k-1)d=qk-1,即d=
,
故an=1+(n-1)
,
又 bn=qn-1,
所以bn-an=qn-1-[1+(n-1)
]
=
[(k-1)(qn-1-1)-(n-1)(qk-1-1)]
=
[(k-1)(qn-2+qn-3+…+q+1)-(n-1)(qk-2+qk-3+…+q+1)],
(ⅰ)当1<n<k时,由q>1知,
bn-an=
[(k-n)(qn-2+qn-3+…+q+1)-(n-1)(qk-2+qk-3+…+qn-1)]<
[(k-n)(n-1)qn-2-(n-1)(k-n)qn-1]
=-
<0;
(ⅱ)当n>k时,由q>1知,
bn-an=
[(k-1)(qn-2+qn-3+…+qk-1)-(n-k)(qk-2+qk-3+…+q+1)]>
[(k-1)(n-k)qk-1-(n-k)(k-1)qk-2]
=(q-1)2qk-2(n-k)>0,
综上所述,当1<n<k时,an>bn;当n>k时,an<bn;当n=1时,an=bn.
故d=
| a5-a1 |
| 5-1 |
| 81-1 |
| 4 |
所以an=1+20(n-1)=20n-19,
令Sn=1×1+21×3+41×32+…+(20n-19)•3n-1,①
则3Sn=1×3+21×32+…+(20n-39)•3n-1+(20n-19)•3n,②
①-②得,-2Sn=1+20×(3+32+…+3n-1)-(20n-19)•3n=1+20×
| 3(1-3n-1) |
| 1-3 |
所以Sn=
| (20n-29)•3n+29 |
| 2 |
(2)因为ak=bk,所以1+(k-1)d=qk-1,即d=
| qk-1-1 |
| k-1 |
故an=1+(n-1)
| qk-1-1 |
| k-1 |
又 bn=qn-1,
所以bn-an=qn-1-[1+(n-1)
| qk-1-1 |
| k-1 |
=
| 1 |
| k-1 |
=
| q-1 |
| k-1 |
(ⅰ)当1<n<k时,由q>1知,
bn-an=
| q-1 |
| k-1 |
| q-1 |
| k-1 |
=-
| (q-1)2qn-2(k-n)(n-1) |
| k-1 |
(ⅱ)当n>k时,由q>1知,
bn-an=
| q-1 |
| k-1 |
| q-1 |
| k-1 |
=(q-1)2qk-2(n-k)>0,
综上所述,当1<n<k时,an>bn;当n>k时,an<bn;当n=1时,an=bn.
点评:本题考查等差数列、等比数列的综合、数列求和,考查分类讨论思想,考查学生分析问题解决问题的能力,本题综合性强,难度较大.
练习册系列答案
相关题目