题目内容
(2012•浙江)已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求数列{an•bn}的前n项和Tn.
(1)求an,bn;
(2)求数列{an•bn}的前n项和Tn.
分析:(I)由Sn=2n2+n可得,当n=1时,可求a1=,当n≥2时,由an=sn-sn-1可求通项,进而可求bn
(II)由(I)知,anbn=(4n-1)•2n-1,利用错位相减可求数列的和
(II)由(I)知,anbn=(4n-1)•2n-1,利用错位相减可求数列的和
解答:解(I)由Sn=2n2+n可得,当n=1时,a1=s1=3
当n≥2时,an=sn-sn-1=2n2+n-2(n-1)2-(n-1)=4n-1
而n=1,a1=4-1=3适合上式,
故an=4n-1,
又∵足an=4log2bn+3=4n-1
∴bn=2n-1
(II)由(I)知,anbn=(4n-1)•2n-1
Tn=3×20+7×2+…+(4n-1)•2n-1
2Tn=3×2+7×22+…+(4n-5)•2n-1+(4n-1)•2n
∴Tn=(4n-1)•2n-[3+4(2+22+…+2n-1)]
=(4n-1)•2n-[3+4•
]
=(4n-1)•2n-[3+4(2n-2)]=(4n-5)•2n+5
当n≥2时,an=sn-sn-1=2n2+n-2(n-1)2-(n-1)=4n-1
而n=1,a1=4-1=3适合上式,
故an=4n-1,
又∵足an=4log2bn+3=4n-1
∴bn=2n-1
(II)由(I)知,anbn=(4n-1)•2n-1
Tn=3×20+7×2+…+(4n-1)•2n-1
2Tn=3×2+7×22+…+(4n-5)•2n-1+(4n-1)•2n
∴Tn=(4n-1)•2n-[3+4(2+22+…+2n-1)]
=(4n-1)•2n-[3+4•
| 2(1-2n-1) |
| 1-2 |
=(4n-1)•2n-[3+4(2n-2)]=(4n-5)•2n+5
点评:本题主要考查了数列的递推公式an=
在数列的通项公式求解中的应用,数列求和的错位相减求和方法的应用.
|
练习册系列答案
相关题目