题目内容

已知不等式x2+px+1>2x+p,若|p|≤4时恒成立,求x的取值范围是______.
原不等式为(x-1)p+(x-1)2>0,
令f(p)=(x-1)p+(x-1)2,它是关于p的一次函数,
定义域为[-4,4],由一次函数的单调性知,
-4(x-1)+(x-1)2>0
4(x-1)+(x-1)2>0

解得x<-3或x>5.
即x的取值范围是{x|x<-3或x>5}.
故答案为{x|x>5或x<-3}.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网